Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Calculations of safe distance from the point of a severe accident during transportation of a package containing spent nuclear fuels

Watanabe, Fumitaka; Okuno, Hiroshi

Proceedings of 18th International Symposium on the Packaging and Transport of Radioactive Materials (PATRAM 2016) (DVD-ROM), 9 Pages, 2016/09

This paper shows our calculations on the effects of a radiological release by assuming a severe accident in nuclear material transportation. Following recalculations of safe distance from the point of a severe accident during transportation of a transportation cask TN12 typically used in France containing spent nuclear fuel, and calculations to replicate the "Regulatory Guide: Emergency Preparedness for Nuclear Facilities", a similar calculation was made for a spent fuel transportation cask NFT-14P that was typically utilized in Japan instead of TN12. The safe distance was calculated to be about 30 m. The above calculations were made with the HotSpot codes which adopted the Gauss plume model and had been developed by the USA. Some additional calculations were made with EyesAct, which was developed and used in Japan, adopting also the Gauss plume model, to compare calculation results.

Journal Articles

Analytical study on fire and explosion accidents assumed in HTGR hydrogen production system

Inaba, Yoshitomo; Nishihara, Tetsuo; Nitta, Yoshikazu*

Nuclear Technology, 146(1), p.49 - 57, 2004/04

 Times Cited Count:4 Percentile:29.18(Nuclear Science & Technology)

One of the most important safety design issues for a hydrogen production system coupling with a High Temperature Gas-cooled Reactor (HTGR) is to ensure reactor safety against fire and explosion accidents because a large amount of combustible fluid is dealt with in the system. The Japan Atomic Energy Research Institute (JAERI) has a demonstration test plan of a hydrogen production system by steam reforming of methane coupling with the High Temperature engineering Test Reactor (HTTR). In the plan, we developed the P2A code system to analyze event sequences and consequences in detail on the fire and explosion accidents assumed in the HTGR or HTTR hydrogen production system. This paper described the three accident scenarios assumed in the system, the structure of P2A, the analysis procedure with P2A and the results of the numerical analyses based on the accident scenarios, and it was showed that P2A was a useful tool for the accident analysis in the system.

JAEA Reports

Proposal of safety design methodologies for an HTGR-hydrogen production system; Mainly on countermeasures against fire and explosion

Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Shusaku

JAERI-Research 97-022, 110 Pages, 1997/03

JAERI-Research-97-022.pdf:4.1MB

no abstracts in English

3 (Records 1-3 displayed on this page)
  • 1